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Abstract. We study the density profile and the dynamics of atoms interacting with the quantized
radiation field in a trap. The density profile is evaluated by using the Bogoliubov approximation.
The calculated mean number of atoms at zero temperature appears to be a function of time which
shows a damped oscillation. The shape of the lines for the light scattered from Bose–Einstein
condensates are also discussed.

Evidence of Bose–Einstein condensation (BEC) in magnetically trapped gases of rubidium
[1], lithium [2], and sodium [3] atoms has recently been reported. An urgent task now is
to detect and diagnose the BEC of atoms in a trap. A direct method of detecting the BEC
is to observe the light scattered from the BEC. Therefore, it is necessary to study optical
properties of the BEC when it interacts with an external light field. Until now, this problem
has only been investigated in some limiting cases. Javanainen [4] considered the case of
an optically thin condensate with a sizea of the order of the resonant wavelength. In such
a case, the scattering takes place mainly in the forward direction, and the scattering cross
section has a Lorentzian line shape. Youet al [5] discussed the problem of scattering of the
light field in another case in which an intense short laser pulse is used. They found that above
the critical temperature of BEC, such a system scatters very weakly, while below the critical
temperature, the number of scattered photons increases dramatically and the scattered light
is emitted into a solid angle which is determined by the size of the condensate. The subject
of the density profile has attracted much attention since the experimental achievement of
BEC. The theoretical study of this problem was reported earlier by both groups, Goldman
et al [6] and Huse and Siggia [7], who extended the Gross–Pitaevskii theory of the weakly
interacting inhomogeneous Bose gas to finite temperatures. They obtained the density
profile of magnetically confined polarized hydrogen H↓ by employing the Hartree–Fock and
Bogoliubov approximation. Oliva [8] developed a general theory of the low-temperature
density profile for a weakly non-ideal Bose gas trapped within an arbitrary potential well. In
the absence of radiation field, Bagnatoet al [9] presented theoretical studies of the density
profile of atoms in a trap for cases of both with and without interaction among atoms, and
found that the critical temperature of BEC, the condensate fraction, and the heat capacity
vary markedly with the shape of the trap potential. Based on local density approximation
[8], Chou et al [10] gave a quantitative result of atomic BEC which is easily checked by
experiments.

It should be pointed out that all of the aforementioned studies of the density profile only
concern the classical light field and hence rely on the semiclassical theory. The purpose of
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this paper is to try to calculate the density profile of atomic BEC in full quantum framework.
The results obtained show that the mean number of atoms at zero temperature appears to
be a function of time. For a fixed momentump, the function is oscillatory with a period
of π/(µ

√
n0 sin 2θp). If the momentum satisfies the Gaussian distribution, then the mean

number of atoms becomes a damping-oscillatory function with damping rate depending on
the number of condensate atoms. Using yet another method, the line shape for the light
scattered from BEC is no longer of Lorentzian type, and exhibits a very narrow spike close
to the resonance.

Let us start our discussion with a one-dimensional model and considerN atoms of mass,
m, without mutual interaction which are localized in a trapV (x). The second-quantized
Hamiltonian for such a system given in the rotation-wave approximation (RWA) and the
local density approximation (LDA) is

H =
∑
p

εgp(x)g
+
p gp +

∑
p

εep(x)e
+
p ep +

∑
k

h̄ωka
+
k ak + h̄µ

∑
k,p

(e+p+kgpak + hc) (1)

where gp, g+p are the annihilation and creation operators of atomic ground state with

momentum,p, and energyεgp(x) = p2

2m + V (x), whereep and e+p denote the annihilation
and creation operators of atomic excited state with momentum,p, and energyεep(x) =
p2

2m + V (x) + h̄ω0. Hereω0 is the bare Rabi frequency between ground and excited states
of the atom,ak, a

+
k designate the annihilation and creation operators for photons with

momentumk, andµ stands for the coupling constant. All operators fulfil the standard
bosonic commutation relations. The local density approximation is an adaptation of the
Thomas–Fermi method, and is reasonably good when ¯hω/kT � 1 (ω is the frequency of a
harmonic trap potential) [10].

We consider a range of parameters describing the BEC of atoms [3]. The potential for
the centre-of-mass motion of a single atom in the ground electronic state can be described
by a harmonic oscillator potential of frequencyω ∼ 410 Hz. Although the potential forms
a finite barrier, there are several thousand energy levels within the trap. By exploiting
an evaporative cooling technique, the trap will store about 109 sodium atoms which will
interact with the resonant light. At temperatures above 15µK, the observed trapped atoms
are of an elliptical shape with an aspect ratio of 2:1 due to the symmetry of the quadrupole
field, and at temperatures below 15µK, the atoms will be separated into two pockets at
the two minima in the trap. Therefore, the RWA and LDA are good approximations for
describing the BEC of atoms in a trap.

The condensate is modelled in the customary way by treating the creation and
annihilation operators as ac number

g+0 ∼ g0 = √n0

and hence the Hamiltonian can be written as

H =
∑
p

εep(x)e
+
p ep +

∑
k

h̄ωka
+
k ak + h̄µ

√
n0

∑
p

(e+p ap + hc) (2)

where we ignore the term∑
p

εgpg
+
p gp = εg0n0+

∑
p 6=0

εgp(x)g
+
p gp ∼ εg0n0 = constant.

Through the Bogoliubov transformation

ek = sinθkck + cosθkdk
ak = cosθkck − sinθkdk

(3)
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where

θk = 0.5 arctan
εek − h̄ωk
2h̄µ
√
n0

the Hamiltonian can be diagonalized:

H =
∑
k

εck(x)c
+
k ck +

∑
k

εdk (x)d
+
k dk (4)

and the energy of quasiparticles are

εck(x) = εek(x) cos2 θk + h̄ωk sin2 θk + h̄µ√n0 sin(2θk)

εdk (x) = εek(x) sin2 θk + h̄ωk cos2 θk − h̄µ√n0 sin(2θk).
(5)

Equations (4) and (5) show that the occurrence of BEC of trapped atoms causes a
fundamental change in the system of the atoms and radiation field. Especially the coherent
interaction between the radiation field and excited atoms in the condensate gives rise to
quasiparticles in the system, each of which appears as the superposition of a photon and
an excited atom. This analysis is meaningful if the rate of the spontaneous emission of the
excited atom is small in comparison with the characteristic value of the excited atom energy
εep(x). The spontaneous emission of the excited atom can be analysed by incorporating
in the Hamiltonian (1) an interaction between the atom and a bath (such as a multimode
radiation field).

Transformation (3) permits us to establish a relation between the quasiparticle states
(QS) and the states of photon–atom (PA) system. First of all, it follows from equation (3)
that the QS vacuum state|0〉QS defined by the stability condition

∀kck|0〉QS = dk|0〉QS = 0

exactly coincides with the photon–atom vacuum state

|0〉AP ≡ |0〉ap ⊗ |0〉ep .
Noticing this fact, one may easily derive the eigenstates or the quasiparticle number states
of such a system as given by

|ncp, ndp〉QS =
(c+p )

nc

√
nc!

(d+p )
md

√
md !
|0〉AP =

nc∑
k=0

md∑
j=0

(
nc

k

)(
md

j

)
×(−1)m

d−j (sinθp)
md+k−j (cosθp)

nc+j−k

×
√
(k + j)!(md + nc − k − j)!

md !mc!
|k + j,md + nc − k − j〉AP (6)

and the corresponding eigenvalues as shown in the following:

E(ncp,m
d
p) = ncpεcp(x)+mdpεdp(x).

Equation (6) indicates that the quasiparticle number states is a linear combination of a finite
number of photon–atom number states with weights representing the correlations between
photons and atoms. Relation (6) is rather complicated. However, the coherent state of
quasiparticles are related to the coherent states of photons and atoms in a simple way. The
connection between the parameters of two different coherent states are

αap = cosθpαcp − sinθpαdp

and

αep = sinθpαcp + cosθpαdp
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whereαcp andαdp are the parameters of the quasiparticle coherent states andαap andαep
are those of the photon and atom coherent states.

In the following, we study the dynamics of the system at zero temperature. For clarity,
we setV (x) = 0. In this case, the time-dependent number of atoms with fixed momentum
p (in excited state withp 6= 0) is found to be

〈e+p ep〉t = sin2 θp〈c+p cp〉t + cos2 θp〈d+p dp〉t − 2 sinθp cosθp Re(〈c+p dp〉t ). (7)

One can easily see that different initial conditions lead to different results. If the atom and
the quantized radiation field are initially in coherent states|αAp 〉 and |αPp 〉, respectively, the
initial conditions will be

〈e+p ep〉t=0 = |αAp |2 〈a+p ap〉t=0 = |αPp |2

or

〈c+p cp〉t=0 = | sinθpα
A
p − cosθpα

P
p |2

〈d+p dp〉t=0 = | sinθpα
P
p + cosθpα

A
p |2.

(8)

From the Heisenberg equation i¯h∂b
∂t
= [b,H ] and the above initial conditions, the expression

for the mean number of atoms with momentump can be derived and is of the form

〈e+p ep〉t = [sin4 θp + cos4 θp + 2 sin2 θp cos2 θp cos[(2µ
√
n0 sin 2θp)t ]] |αAp |2

+2 sin2 θp cos2 θp(1− cos[(2µ
√
n0 sin 2θp)t ])|αPp |2

+(1− cos[(2µ
√
n0 sin 2θp)t ])(−2 sin3 θp cosθp + 2 sinθ cos3 θp)α

A
p α

P
p .

(9)

As we see, the number of atoms in the excited state with a fixed momentum,p, is an
oscillatory function of time with the period ofπ/(µ

√
n0 sin 2θp). The larger the momentum

|p|, the shorter the period of oscillation. Particularly, the mean number of atoms in the
excited state is close to a constant when|p| → 0. If the momentum of atoms initially
distributes like a Gaussian wavepacket, then the total number of atoms (in the excited state)
reads

Ne =
∑
p

|c(p)|2〈e+p ep〉t (10)

where

|c(p)|2 =
√

2W 2/π exp(−2W 2(p − p0)
2/h̄2).

The numerical result is displayed in figure 1. From the figure, we see that the mean number
of atoms varies with time as a damped oscillation with a damping rate and a quasiperiod
depending on the number of condensate atoms. This property might be used to detect the
BEC.

For the case of finite temperature, the normal part of density function can be written as

ρn(x) =
∑
k

(sin2 θkn
c
k + cos2 θkn

d
k ) (11)

wherenck andndk are the occupation number of quasiparticlesc andd at the energy levelk,
respectively, which are given by Bose–Einstein distribution

n
c(d)
k =

(
exp

(
−ε

c(d)
k

kBT

)
− 1

)−1
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Figure 1. The mean number of atoms versus time. The parametersαAp = 3, αPp = 4. In (a),
we taken0 = 1000, in (b), n0 = 10 000.

Figure 2. The normal density profile of trapped atoms for several temperatures, the parameter
n0 = 1000. For the full curveT = 100, for the dotted curveT = 10.

whereT is the temperature, andkB is Boltzmann’s constant. Now we turn to the case of
T ∼ 0. In this case, the term cos2 θkn

d
k in equation (11) and the detuning termδk = ω0−ωk

in the quasiparticle energy can be negligible. Thus, we obtain

ρn(x) =
∑
k

(
exp

(
k2/2m+ V (x)

kBT

)
− 1

)−1

= λ−3g3/2(e
−βV (x)). (12)

This is just the LDA result that is obtained by replacing the fugacity in [11, 12] with
z exp(−βV ). The numerical result of equation (11) is depicted in figure 2, where the curve
is for a harmonic trapV (x) = m

2ω
2x2. The condensate partρs(x) of total densityρ(x) can

be calculated by using the Mayer cluster expansion theory [10, 11]

ρs(x) = z1

1− z1
|ψ0(x)|2 (13)

where z1 = exp(−βV (x)) and ψ0(x) is the ground state of a particle in the harmonic
oscillator potential.

In equilibrium, the expectation number of photons with frequencyωk may be given as

〈a+k ak〉 =
∫ ∞
−∞

dx [cos2 θk〈c+k ck〉 + sin2 θk〈d+k dk〉]. (14)

It is well known that the quasiparticle occupation number can be expressed as a Bose–
Einstein distribution function. Therefore, we can write

〈a+k ak〉 =
∫ ∞
−∞

dx [sin2 θk(exp(−εck/kBT )− 1)+ cos2 θk(exp(−εdk /kBT )− 1)]. (15)

From this expression and the fact that the rateS(k) of photon scattering from the condensate
is proportional to〈a+k ak〉, we see that the line shape is non-Lorentzian, and exhibits a very
narrow spike close to the resonance (see figure 3), the larger the number of condensate
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Figure 3. The spectrum scattered form BEC of trapped atoms for differentn0. For the dotted
curve n0 = 1000, for the full curven0 = 100. The temperature is commonly taken to be
T = 100.

atoms, the narrower the shape of the spectrum scattered from the BEC of atoms. The
situation will change somewhat when the interaction among the atoms

Hi =
∑

p1,p2,p
′
1,p
′
2

Vp1,p2,p
′
1,p
′
2
g+p1
e+p2
ep′2gp

′
1

is included. However, for the Bogoliubov approximation considered here, the inclusion of
the interaction between the ground and excited atoms only causes a change of a parameter in
the εep(x), which does not change the shape of the spectrum. In fact, as argued in [13], our
model includes all the effects of atom–atom interactions due to the exchange of transverse
photons.

In summary, we conclude that when Bogoliubov approximation is used to simplify
the Hamiltonian of the atom-quantized radiation field system, the mean number of atoms
appears to be a function of time, which behaves as a damped oscillation. The damping
rate and the period of quasioscillation depend on both the coupling constantµ and the
number of condensate atomsn0, whereas the density profile of the normal part of trapped
atoms depends weakly on the number of condensate atoms. Particularly, the line shape of
the spectrum scattered from BEC is non-Lorentzian and closely related to the number of
condensate atoms. The narrow feature of the spectrum atωk ∼ ω0 exhibits interesting and
feasible applications for precision spectroscopy.

Acknowledgments

This work was in part supported by the National Natural Science Foundation of China and
the Foundation endowed by Institute of Theoretical Physics, the Academy of Science of
China. One of the authors (X-XY) thanks Professor C P Sun for his kind help.

References

[1] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science269 198
[2] Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995Phys. Rev. Lett.75 1687
[3] Davis K B, Mewes M O, Andrews M R, Van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995

Phys. Rev. Lett.75 3969
[4] Javanainen J 1994Phys. Rev. Lett.72 2375
[5] You L, Lewenstein M and Cooper J 1995Phys. Rev.A 51 4712
[6] Goldman V V, Silvera I F and Leggett A J 1981Phys. Rev.B 24 2877
[7] Huse D A and Siggia E D 1982J. Low Temp. Phys.46 137
[8] Oliva J 1989Phys. Rev.B 39 4197
[9] Bagnato V, Pritchard D E and Kleppner D 1987Phys. Rev.A 35 4354

[10] Chou T T, Yang C N and Yu L H 1996Phys. Rev.A 53 4257



Atomic Bose–Einstein condensation 3503

[11] Huang K and Yang C N 1957Phys. Rev.105 776
[12] Huang K, Yang C N and Luttinger J M 1957Phys. Rev.105 776
[13] You L, Lewenstein M and Cooper J 1994Phys. Rev. Lett.50 R3565


